Сообщить об ошибке Помочь телеканалу

Академия занимательных наук. Математика. Вопросы

Настройки выбора

все вопросы

Занимательная математика:

Арифметика Алгебра Геометрия Решаем задачи по математике

По тегам:

алгебра арабские цифры арифметика арифметическая прогрессия арифметические действия бесконечность биссектриса большие числа вероятность волшебные числа восьмиугольник вписанная и описанная окружность время выражения с переменной вычитание гектар геометрические фигуры геометрия год головоломки гугол девяносто действия деление деление дробей деление с остатком десятичные дроби детерминизм децилитр диаграммы дроби дробные выражения дробь единицы измерения животные задача задача. задачи задачи на движение инструменты интеграл информатика калькулятор катет катеты квадрат квадрат суммы квадратный дециметр квадратный корень квадратура координатный луч координаты корень квадратный корень числа корни косинус космос кпд кратчайший путь круг круги эйлера куб кубик рубика лента мёбиуса линейка линейная функция линейные неравенства линейные уравнения логарифм ломоносов математика математики математические уравнения матрица меры площади метод интервалов мнимая степень многоугольник многочлен многочлены множители модуль неравенства нерешённые задачи обратные функции общий делитель объём шара овал округление чисел ось координат ось симметрии отношения отрицательные числа парабола парадосы параллелограмм параллельные прямые переменные периметр период пифагор плоскость площади площадь площадь n-угольника площадь многоугольника площадь окружности площадь треугольника площать круга подобие треугольников порядок выполнения действий пример примеры и уравнения программировать происхождение науки пропорции пропорциональность простые числа процент проценты прямоугольник равнобедренный треугольник раскрытие скобок рациональные дроби рациональные числа решение задач решение математических задач решение систем уравнений римские цифры ряд тейлора самое большое число самое маленькое число синус системы уравнений сложение среднее арифметическое степень сумма счёт таблица сложения таблица умножения тангенс температура теорема Пифагора теория вероятности теория обезьяны тождества точка треугольник трисекция угла угол удалить удвоение куба умножение умножение двухзначных чисел уравнение уравнения факториал фигуры формула формула пика формулы сокращённого умножения форумы фракталы функции функция царица наук циркуль цифры части от целого чертёж числа числитель число i число пи шар шестиугольник шифр эллипс

Вопросы героям:

Здравствуйте, уважаемый профессор Круглов и Циркуль! Меня интересуют нерешённые теории и задачи по математике, кроме 7-и задач тысячелетия. ...
Семёнов Лев
Семёнов Лев 13 лет
4 мая 2019 просмотров: 111 1

Здравствуй, Лёва! Существует легенда о нерешаемой математической задаче. Молодой студент колледжа упорно учился и очень боялся завалить экзамен по высшей математике. Накануне экзамена он засиделся за учебниками и проспал его начало.  Когда он вбежал в аудиторию, опоздав на несколько минут, на доске он увидел три уравнения. Решение первых двух далось ему достаточно легко, но третье казалось нерешаемым. Он отчаянно пыхтел над ним и всего за десять минут до конца экзамена он, наконец, подобрал подходящее решение и успел точно в срок. Студент сдал свою работу и отправился домой. Тем же вечером раздался телефонный звонок. Это был его преподавателя. "Вы понимаете, что Вы сделали на экзамене?" – кричал он в трубку. "О, нет", – подумал студент. "Я, должно быть, неверно решил задачи." "Вам нужно было решить только первые два уравнения", – объяснил преподаватель. "Последним было уравнение, которое все известные математики, начиная с Эйнштейна, безуспешно пытались решить. Я обсуждал его с аудиторией перед началом экзамена. А Вы просто решили его!" На самом деле, эта байка объединяет одну из популярных студенческих фантазий, ученик не только оказывается самым умным, но также превосходит преподавателя и всех учёных в определённой области, и причиной тому - "позитивное мышление". До сих пор существует много открытых вопросов в математике. Первая проблема Льва Ландау: верно ли, что каждое чётное число, большее двух, может быть представлено в виде суммы двух простых чисел, а каждое нечётное число, большее 5, может быть представлено в виде суммы трёх простых чисел? Стивен Кук сформулировал проблему: может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от  алгоритма проверки. Эта проблема является одной из нерешённых проблем логики и информатики. Её решение могло бы революционным образом изменить основы криптографии, используемой при передаче и хранении данных.

посмотреть другие ответы
Степан Петрович Круглов
Степан Петрович Круглов Профессор математики
7 мая 2019
© 2008—2019, ДСОТ «Радость моя» Все права защищены.
Свидетельство СМИ: ЭЛ № ФС77-49047
Лицензия на телевизионное вещание
выдана ООО «Телерадиокомпания «Мироздание»
ТВ №21075 от 18.06.2012, действует до 14.08.2023 г